42 resultados para non nucleoside reverse transcriptase inhibitor

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

All retroviruses contain two copies of genomic RNA that are linked noncovalently. The dimeric RNA of human immunodeficiency virus type 1 (HIV-1) undergoes rearrangement during virion maturation, whereby the dimeric RNA genome assumes a more stable conformation. Previously, we have shown that the packaging of the HIV-1 polymerase (Pol) proteins reverse transcriptase (RT) and integrase (IN) is essential for the generation of the mature RNA dimer conformation. Analysis of HIV-1 mutants that are defective in processing of Pol showed that these mutant virions contained altered dimeric RNA conformation, indicating that the mature RNA dimer conformation in HIV-1 requires the correct proteolytic processing of Pol. The HIV-1 Pol proteins are multimeric in their mature enzymatically active forms; RT forms a heterodimer, and IN appears to form a homotetramer. Using RT and IN multimerization defective mutants, we have found that dimeric RNA from these mutant virions has the same stability and conformation as wild-type RNA dimers, showing that the mature enzymatically active RT and IN proteins are dispensable for the generation of mature RNA dimer conformation. This also indicated that formation of the mature RNA dimer structure occurs prior to RT or IN maturation. We have also investigated the requirement of Pol for RNA dimerization in both Mason-Pfizer monkey virus (M-PMV) and Moloney murine leukemia virus (MoMuLV) and found that in contrast to HIV-1, Pol is dispensable for RNA dimer maturation in M-PMV and MoMuLV, demonstrating that the requirement of Pol in retroviral RNA dimer maturation is not conserved among all retroviruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The specific impact of mutations that abrogate human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) dimerization on virus replication is not known, as mutations shown previously to inhibit RT dimerization also impact Gag-Pol stability, resulting in pleiotropic effects on HIV-1 replication. We have previously characterized mutations at codon 401 in the HIV-1 RT tryptophan repeat motif that abrogate RT dimerization in vitro, leading to a loss in polymerase activity. The introduction of the RT dimerization-inhibiting mutations W401L and W401A into HIV-1 resulted in the formation of noninfectious viruses with reduced levels of both virion-associated and intracellular RT activity compared to the wild-type virus and the W401F mutant, which does not inhibit RT dimerization in vitro. Steady-state levels of the p66 and p51 RT subunits in viral lysates of the W401L and W401A mutants were reduced, but no significant decrease in Gag-Pol was observed compared to the wild type. In contrast, there was a decrease in processing of p66 to p51 in cell lysates for the dimerization-defective mutants compared to the wild type. The treatment of transfected cells with indinavir suggested that the HIV-1 protease contributed to the degradation of virion-associated RT subunits. These data demonstrate that mutations near the RT dimer interface that abrogate RT dimerization in vitro result in the production of replication-impaired viruses without detectable effects on Gag-Pol stability or virion incorporation. The inhibition of RT activity is most likely due to a defect in RT maturation, suggesting that RT dimerization represents a valid drug target for chemotherapeutic intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reverse transcription of the HIV RNA genome is thought to occur in the host cell cytoplasm after viral adsorption. However, viral DNA has been isolated in cell-free virus particles. We have quantitated by polymerase chain reaction (PCR) amplification the amount of viral DNA in virions as compared to RNA. Virus produced by proviral DNA transfections of cos-7 cells or by chronically-infected H9 cells; neither of which express the cell surface CD4 receptor, contained at least 1000 times more viral RNA than DNA. In contrast, only 60 times more RNA than DNA was present in virus particles produced by transfection of Jurkat cells, which were CD4-positive and thus potentially susceptible to superinfection. Protease-defective virus, carrying only the precursor of reverse transcriptase (RT) p160gag-pol, contained virtually no detectable DNA. These results indicate that only mature RT (p66/p51) and not its precursor (p160gag-pol) is responsible for the presence of viral DNA in HIV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonnucleoside reverse transcriptase inhibitors (NNRTIs) target HIV-1 reverse transcriptase (RT) by binding to a pocket in RT that is close to, but distinct, from the DNA polymerase active site and prevent the synthesis of viral cDNA. NNRTIs, in particular, those that are potent inhibitors of RT polymerase activity, can also act as chemical enhancers of the enzyme's inter-subunit interactions. However, the consequences of this chemical enhancement effect on HIV-1 replication are not understood. Here, we show that the potent NNRTIs efavirenz, TMC120, and TMC125, but not nevirapine or delavirdine, inhibit the late stages of HIV-1 replication. These potent NNRTIs enhanced the intracellular processing of Gag and Gag-Pol polyproteins, and this was associated with a decrease in viral particle production from HIV-1-transfected cells. The increased polyprotein processing is consistent with premature activation of the HIV-1 protease by NNRTI-enhanced Gag-Pol multimerization through the embedded RT sequence. These findings support the view that Gag-Pol multimerization is an important step in viral assembly and demonstrate that regulation of Gag-Pol/Gag-Pol interactions is a novel target for small molecule inhibitors of HIV-1 production. Furthermore, these drugs can serve as useful probes to further understand processes involved in HIV-1 particle assembly and maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical calculations for some structural and electronic properties of the azide moiety in the nucleoside reverse transcriptase (RT) inhibitor 3′-azido-3′- deoxythymidine (AZT) are reported. These properties, which include geometrical properties in three dimensional space, Hirshfeld charges, electrostatic potential (MEP), vibrational frequencies, and core and valence ionization spectra, are employed to study how the azide group is affected by the presence of a larger fragment. For this purpose, two small but important organic azides, hydrazoic acid and methyl azide, are also considered. The general features of trans Cs configuration for RNNN fragments[1] is distorted in the large AZT bio-molecule. Hirshfeld charge analysis shows charges are reallocated more evenly on azide when the donor group R is not a single atom. Infrared and photoelectron spectra reveal different aspects of the compounds. In conclusion, the electronic structural properties of the compounds depend on the specific property, the local structure and chemical environment of a species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of resistant viruses to any of the anti-HIV-1 compounds used in the current therapies against AIDS underlies the urge for the development of new drug targets and/or new drugs acting through novel mechanisms. While all anti-HIV-1 nucleoside analogues in clinical use and in clinical trials rely on ribose modifications for activity, we designed nucleosides with a natural deoxyribose moiety and modifications of position 8 of the adenine base. Such modifications might induce a steric clash with helix αH in the thumb domain of the p66 subunit of HIV-1 RT at a distance from the catalytic site, causing delayed chain termination. Eleven new 2′-deoxyadenosine analogues modified on position 8 of the purine base were synthesized and tested in vitro and in cell-based assays. In this paper we demonstrate for the first time that chemical modifications on position 8 of 2′-deoxyadenosine induce delayed chain termination in vitro, and also inhibit DNA synthesis when incorporated in a DNA template strand. Furthermore, one of them had moderate anti-HIV-1 activity in cell-culture. Our results constitute a proof of concept indicating that modification on the base moiety of nucleosides can induce delayed polymerization arrest and inhibit HIV-1 replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

tRNA(3Lys) is a primer for reverse transcription in human immunodeficiency virus type 1 (HIV-1), and the anticodon of tRNA(3Lys) has been implicated in playing a role in both its placement onto the HIV-1 genome and its interaction with HIV-1 reverse transcriptase (RT). In this work, the anticodon in a tRNA(3Lys) gene was changed from UUU to CUA (tRNA(3Lys)Su+) or, in addition, G-73 was altered to A (tRNA(3Lys)Su+G73A). COS-7 cells were transfected with either wild-type or mutant tRNA(3Lys) genes, and both the wild-type and mutant tRNA(3Lys) produced were purified by using immobilized tRNA-specific hybridization probes. Each mutant tRNA(3Lys) was tested for its ability to prime reverse transcription in vitro, either alone or in competition with wild-type tRNA(3Lys). Short RT extensions of wild-type and mutant tRNALys could be distinguished from each other by their different mobilities in one-dimensional single-stranded conformation polymorphism polyacrylamide gel electrophoresis. These reverse transcription products show that heat-annealed tRNA(3Lys)Su+ has the same ability as heat-annealed wild-type tRNA(3Lys) to prime RT and competes equally well with wild-type tRNA(3Lys) for priming RT. tRNA(3Lys)Su+G73A has 60% of the wild-type ability to prime RT but competes poorly with wild-type tRNA(3Lys) for priming RT. However, the priming abilities of wild-type and mutant tRNA(3) are quite different when in vivo-placed tRNA is examined. HIV-1 produced in COS cells transfected with a plasmid containing both the HIV-1 proviral DNA and DNA coding for tRNA(3Lys)Su+ contains both endogenous, cellular wild-type tRNA(3Lys) and mutant tRNA(3Lys). When total viral RNA is used as the source of primer tRNA placed onto the genomic RNA in vivo, only wild-type tRNA(3Lys) is used as a primer. If the total viral RNA is first heated and exposed to hybridizing conditions, then both the wild-type and mutant tRNA(3Lys) act as primers for RT. These results indicate that the tRNA(3Lys)Su+ packaged into the virions is unable to act as a primer for RT, and a model is proposed to explain the disparate results between heat-annealed and in vivo-placed primer tRNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly pathogenic avian influenza virus infection is associated with severe mortality in both humans and poultry. The mechanisms of disease pathogenesis and immunity are poorly understood although recent evidence suggests that cytokine/chemokine dysregulation contributes to disease severity following H5N1 infection. Influenza A virus infection causes a rapid influx of inflammatory cells, resulting in increased reactive oxygen species production, cytokine expression, and acute lung injury. Proinflammatory stimuli are known to induce intracellular reactive oxygen species by activating NADPH oxidase activity. We therefore hypothesized that inhibition of this activity would restore host cytokine homeostasis following avian influenza virus infection. A panel of airway epithelial and immune cells from mammalian and avian species were infected with A/Puerto Rico/8/1934 H1N1 virus, low-pathogenicity avian influenza H5N3 virus (A/duck/Victoria/0305-2/2012), highly pathogenic avian influenza H5N1 virus (A/chicken/Vietnam/0008/2004), or low-pathogenicity avian influenza H7N9 virus (A/Anhui/1/2013). Quantitative real-time reverse transcriptase PCR showed that H5N1 and H7N9 viruses significantly stimulated cytokine (interleukin-6, beta interferon, CXCL10, and CCL5) production. Among the influenza-induced cytokines, CCL5 was identified as a potential marker for overactive immunity. Apocynin, a Nox2 inhibitor, inhibited influenza-induced cytokines and reactive oxygen species production, although viral replication was not significantly altered in vitro. Interestingly, apocynin treatment significantly increased influenza virus-induced mRNA and protein expression of SOCS1 and SOCS3, enhancing negative regulation of cytokine signaling. These findings suggest that apocynin or its derivatives (targeting host responses) could be used in combination with antiviral strategies (targeting viruses) as therapeutic agents to ameliorate disease severity in susceptible species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cultured human breast carcinoma cell lines are important models for investigating the pathogenesis of breast cancer. Their use, however, is limited because of loss of expression of breast-specific markers and the development of a dedifferentiated phenotype after continuous culture. PMC42 is a unique human breast carcinoma line, previously shown to express secretory and myoepithelial markers. We have induced PMC42 cells to form hollow organoids in culture, similar to in vivo breast structures, using a combination of hormones including estrogen, progesterone, dexamethasone, insulin, and prolactin in combination with a permeable extracellular matrix. The organoids comprised polarized cells located around a central lumen. Expression of β-casein was demonstrated in cells within organoids using reverse transcriptase-polymerase chain reaction, Western blot analysis, and confocal immunofluorescence. In this in vitro system, milk-specific gene expression was induced through hormone and matrix interactions which may be similar to those operating in vivo. PMC42 is a novel model for investigations into the molecular mechanisms of carcinogenesis and differentiation in the human breast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sodium/proton exchangers (NHE) are transmembrane proteins that facilitate the exchange of a Na+ ion for a H+ ion across cellular membranes. The NHE are present in the gills of fishes and are believed to function in acid-base regulation by driving the extrusion of protons across the branchial epithelium in exchange for Na+ in the water. In this study, we have used reverse transcriptase-polymerase chain reaction (RT-PCR) to detect the presence of a branchial NHE in the gills of the Atlantic hagfish, Myxine glutinosa. The subsequent partial cDNA sequence shares homology with other vertebrate and invertebrate NHE isoforms. In addition, using semi-quantitative, multiplex RT-PCR we demonstrate that mRNA expression of hagfish gill NHE is upregulated following an induced metabolic acidosis. Expression was increased to 4.4 times basal levels at 2-h post-infusion and had decreased to 1.6 times basal by 6 h. Expression had returned to basal levels by 24-h post-infusion. The inference from this study is that a gill NHE which is potentially important in acid-base regulation has been present in the vertebrate lineage since before the divergence of the hagfishes from the main vertebrate line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc is an essential trace element required by all living organisms. An adequate supply of zinc is particularly important in the neonatal period. Zinc is a significant component of breast milk, which is transported across the maternal epithelia during lactation. The mechanisms by which zinc becomes a constituent of breast milk have not been elucidated. The function of the zinc transporter ZnT4 in the transport of zinc into milk during lactation was previously demonstrated by studies of a mouse mutant, the ‘lethal milk’ mouse, where a mutation in the ZnT4 gene decreased the transport of zinc into milk. In the present study, we have investigated the expression of the human orthologue of ZnT4 (hZnT4) in the human breast. We detected hZnT4 mRNA expression in the tissue from the resting and lactating human breast, using reverse-transcriptase PCR. Western-blot analysis using antibodies to peptide sequences of hZnT4 detected a major band of the predicted size of 47 kDa and a minor band of 77 kDa, in extracts from the resting and lactating breast tissues. There was no difference in the hZnT4 expression levels between lactating and resting breasts. The hZnT4 protein was present in the luminal cells of the ducts and alveoli where it had a granular distribution. A cultured human breast epithelial cell line PMC42 was used to investigate the subcellular distribution of hZnT4 and this showed a granular label throughout the cytoplasm, consistent with a vesicular localization. The presence of zinc-containing intracellular vesicles was demonstrated by using the zinc-specific fluorphore Zinquin (ethyl-[2-methyl-8-p-toluenesulphonamido-6-quinolyloxy]acetate). Double labelling indicated that there was no obvious overlap between Zinquin and the hZnT4 protein, suggesting that hZnT4 was not directly involved in the transport of zinc into vesicles. We detected expression of two other members of the hZnT family, hZnT1 and hZnT3, in human breast epithelial cells. We conclude that hZnT4 is constitutively expressed in the human breast and may be one of the several members of the ZnT family involved in the transport of zinc into milk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The L1 retrotransposon has significantly shaped the structure of the human genome. At least 30% of human genome sequence can be attributed to L1 reverse transcriptase activity. There are 105 copies of the human L1 retrotransposon, L1Hs, most of which are defective, although ~8–9x103 are full length. L1Hs elements transpose through an RNA intermediate and transcription is thought to be the rate limiting step in retrotransposition. Because transcription of retrotransposons in a variety of organisms has been shown to respond to environmental stimuli, we investigated the influence of various agents on transcription from two different L1Hs promoters. The activity of the L1Hs promoters was analyzed by transfecting L1Hs-expressing cell lines with plasmids containing the L1Hs promoters fused to the LacZ reporter gene and monitoring expression with a ß-galactosidase assay. Small increases in ß-galactosidase activity were observed with both L1Hs promoters after treatment with serum, testosterone, dihydrotestosterone and organochloride pesticides, indicating that these agents can influence L1Hs transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retrotransposons have clearly molded the structure of the human genome. The reverse transcriptase coded for by long interspersed nuclear elements (LINEs) accounts for 35% of the human genome, with 8–9 x 105 copies of the most common human LINE element, L1Hs. Retrotransposons cycle through an RNA intermediate with transcription as the rate limiting step. Because various retrotransposons have been demonstrated to be induced by environmental stimuli, we investigated the response of the L1Hs promoter to various agents. L1Hs promoter activity was analyzed by transfecting an L1Hs-expressing cell line with plasmids containing one of two L1Hs promoters fused to the LacZ reporter gene. L1Hs promoter activity was then monitored with a ß-galactosidase assay. Treatment with UV light and heat shock resulted in a small increase in ß-galactosidase activity from one promoter, while treatment with tetradecanoylphorbol 13-acetate resulted in small increases in ß-galactosidase activity from both promoters. No increase in ß-galactosidase activity was observed after exposure to X-rays or hydrogen peroxide.